Search results
Results from the WOW.Com Content Network
This process suggested that carbon dioxide and hydrogen could be reacted to produce methanol. [9] German chemists Alwin Mittasch and Mathias Pier, working for Badische-Anilin & Soda-Fabrik (BASF), developed a means to convert synthesis gas (a mixture of carbon monoxide , carbon dioxide , and hydrogen ) into methanol and received a patent.
During advanced stages of organic decay, all electron acceptors become depleted except carbon dioxide. Carbon dioxide is a product of most catabolic processes, so it is not depleted like other potential electron acceptors. Only methanogenesis and fermentation can occur in the absence of electron acceptors other than carbon.
In this process, a mixture of hydrogen, carbon monoxide, and carbon dioxide, known as syngas, is used as carbon and energy sources, and then converted into fuel and chemicals by microorganisms. [ 1 ] The main products of syngas fermentation include ethanol , butanol , acetic acid , butyric acid , and methane . [ 2 ]
Efficiency for methanol synthesis of hydrogen and carbon dioxide currently is 79 to 80%. [19] Thus the efficiency for production of methanol from electricity and carbon dioxide is about 59 to 78%. If CO 2 is not directly available but is obtained by direct air capture then the efficiency amounts to 50-60 % for methanol production by use of ...
Electricity generated from renewable sources is also used to process carbon dioxide and water into syngas through high-temperature electrolysis. This is an attempt to maintain carbon neutrality in the generation process. Audi, in partnership with company named Sunfire, opened a pilot plant in November 2014 to generate e-diesel using this ...
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.
Autothermal reforming (ATR) uses oxygen and carbon dioxide or steam in a reaction with methane to form syngas. The reaction takes place in a single chamber where the methane is partially oxidized. The reaction is exothermic. When the ATR uses carbon dioxide, the H 2:CO ratio produced is 1:1; when the ATR uses steam, the H 2:CO ratio produced is ...
After removing hydrogen sulfide and carbon dioxide , which form as side products during the gasification step, methanol can be made using conventional methods. [15] This route can offer renewable methanol production from biomass at efficiencies up to 75%. [17] Production methods using carbon dioxide as a feedstock have also been proposed.