Search results
Results from the WOW.Com Content Network
A fast Fourier transform (FFT) is an algorithm that computes the Discrete Fourier Transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa.
The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).
This category is for fast Fourier transform (FFT) algorithms, i.e. algorithms to compute the discrete Fourier transform (DFT) in O(N log N) time (or better, for approximate algorithms), where is the number of discrete points.
The Bailey's FFT (also known as a 4-step FFT) is a high-performance algorithm for computing the fast Fourier transform (FFT). This variation of the Cooley–Tukey FFT algorithm was originally designed for systems with hierarchical memory common in modern computers (and was the first FFT algorithm in this so called "out of core" class).
A Fistful of TOWs – TOW stands for "tube-launched, optically tracked, wire-guided missiles" [1] — is a set of rules designed for wargames with 6 mm miniatures at a scale of either 1" = 100 metres or 1 cm = 100 metres.
It works by recursively applying fast Fourier transform (FFT) over the integers modulo +. The run-time bit complexity to multiply two n -digit numbers using the algorithm is O ( n ⋅ log n ⋅ log log n ) {\displaystyle O(n\cdot \log n\cdot \log \log n)} in big O notation .
Rader's algorithm (1968), [1] named for Charles M. Rader of MIT Lincoln Laboratory, is a fast Fourier transform (FFT) algorithm that computes the discrete Fourier transform (DFT) of prime sizes by re-expressing the DFT as a cyclic convolution (the other algorithm for FFTs of prime sizes, Bluestein's algorithm, also works by rewriting the DFT as a convolution).
where "FFT" denotes the fast Fourier transform, and f is the spatial frequency spans from 0 to N/2 – 1. The proposed FFT-based imaging approach is diagnostic technology to ensure a long life and stable to culture arts. This is a simple, cheap which can be used in museums without affecting their daily use.