Search results
Results from the WOW.Com Content Network
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
Converts Unicode character codes, always given in hexadecimal, to their UTF-8 or UTF-16 representation in upper-case hex or decimal. Can also reverse this for UTF-8. The UTF-16 form will accept and pass through unpaired surrogates e.g. {{#invoke:Unicode convert|getUTF8|D835}} → D835.
On most modern computers, this is an eight bit string. Because the definition of a byte is related to the number of bits composing a character, some older computers have used a different bit length for their byte. [2] In many computer architectures, the byte is the smallest addressable unit, the atom of addressability, say. For example, even ...
A hex editor (or binary file editor or byte editor) is a computer program that allows for manipulation of the fundamental binary data that constitutes a computer file. The name 'hex' comes from 'hexadecimal', a standard numerical format for representing binary data. A typical computer file occupies multiple areas on the storage medium, whose ...
Intel hexadecimal object file format, Intel hex format or Intellec Hex is a file format that conveys binary information in ASCII text form, [10] making it possible to store on non-binary media such as paper tape, punch cards, etc., to display on text terminals or be printed on line-oriented printers. [11]
This is because the radix of the hexadecimal system (16) is a power of the radix of the binary system (2). More specifically, 16 = 2 4, so it takes four digits of binary to represent one digit of hexadecimal, as shown in the adjacent table. To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary ...
The upper four bits, called the "zone" bits, are usually set to a fixed value so that the byte holds a character value corresponding to the digit. EBCDIC systems use a zone value of 1111 (hex F); this yields bytes in the range F0 to F9 (hex), which are the EBCDIC codes for the characters "0" through "9".
In a hex dump, each byte (8 bits) is represented as a two-digit hexadecimal number. Hex dumps are commonly organized into rows of 8 or 16 bytes, sometimes separated by whitespaces. Some hex dumps have the hexadecimal memory address at the beginning. Some common names for this program function are hexdump, hd, od, xxd and simply dump or even D.