Search results
Results from the WOW.Com Content Network
Methane clathrate block embedded in the sediment of hydrate ridge, off Oregon, USA. Clathrate hydrates, or gas hydrates, clathrates, or hydrates, are crystalline water-based solids physically resembling ice, in which small non-polar molecules (typically gases) or polar molecules with large hydrophobic moieties are trapped inside "cages" of hydrogen bonded, frozen water molecules.
Regarding the organization of covalent bonds, recall that classic molecular solids, as stated above, consist of small, non-polar covalent molecules. The example given, paraffin wax , is a member of a family of hydrocarbon molecules of differing chain lengths, with high-density polyethylene at the long-chain end of the series.
Molecules that are formed primarily from non-polar covalent bonds are often immiscible in water or other polar solvents, but much more soluble in non-polar solvents such as hexane. A polar covalent bond is a covalent bond with a significant ionic character. This means that the two shared electrons are closer to one of the atoms than the other ...
Hydrogen bond: A hydrogen bond is a specific type of dipole-dipole interaction between a partially positive hydrogen atom and a partially negative electron donor that contain a pair of electrons such as oxygen, fluorine and nitrogen. The strength of hydrogen bond depends on the chemical nature and geometric arrangement of each group. [citation ...
The bond between the nitrogen and each oxygen is a double bond in one structure and a single bond in the other two, so that the average bond order for each N–O interaction is 2 + 1 + 1 / 3 = 4 / 3 . [8]
Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.
'Nonmolecular' would perhaps be a better term. Metallic bonding is mostly non-polar, because even in alloys there is little difference among the electronegativities of the atoms participating in the bonding interaction (and, in pure elemental metals, none at all). Thus, metallic bonding is an extremely delocalized communal form of covalent bonding.
For homonuclear A–A bonds, Linus Pauling took the covalent radius to be half the single-bond length in the element, e.g. R(H–H, in H 2) = 74.14 pm so r cov (H) = 37.07 pm: in practice, it is usual to obtain an average value from a variety of covalent compounds, although the difference is usually small.