Search results
Results from the WOW.Com Content Network
In object-oriented (OO) and functional programming, an immutable object (unchangeable [1] object) is an object whose state cannot be modified after it is created. [2] This is in contrast to a mutable object (changeable object), which can be modified after it is created. [3]
The immutable keyword denotes data that cannot be modified through any reference. The const keyword denotes a non-mutable view of mutable data. Unlike C++ const, D const and immutable are "deep" or transitive, and anything reachable through a const or immutable object is const or immutable respectively. Example of const vs. immutable in D
In object-oriented programming, "immutable interface" is a pattern for designing an immutable object. [1] The immutable interface pattern involves defining a type which does not provide any methods which mutate state. Objects which are referenced by that type are not seen to have any mutable state, and appear immutable.
There are multiple ways to implement the flyweight pattern. One example is mutability: whether the objects storing extrinsic flyweight state can change. Immutable objects are easily shared, but require creating new extrinsic objects whenever a change in state occurs. In contrast, mutable objects can share state.
For example, a legal debate about sexual orientation concerns whether it is a mutable or immutable characteristic. [1] If it is immutable, then homosexuality, bisexuality, asexuality, heterosexuality, etc., are all immutable characteristics that naturally occur and cannot be changed. If it is mutable, then those characteristics can be changed.
In computing, a persistent data structure or not ephemeral data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable, as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure.
For example, in OCaml object fields are immutable by default and must be explicitly marked with the keyword mutable to be mutable, while in Scala, bindings are explicitly immutable when defined with val for "value" and explicitly mutable when defined with var for "variable".
The main difference between an arbitrary data structure and a purely functional one is that the latter is (strongly) immutable. This restriction ensures the data structure possesses the advantages of immutable objects: (full) persistency, quick copy of objects, and thread safety.