enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplication table - Wikipedia

    en.wikipedia.org/wiki/Multiplication_table

    Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on a telephone keypad. Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5.

  3. Four fours - Wikipedia

    en.wikipedia.org/wiki/Four_fours

    For example, when d=4, the hash table for two occurrences of d would contain the key-value pair 8 and 4+4, and the one for three occurrences, the key-value pair 2 and (4+4)/4 (strings shown in bold). The task is then reduced to recursively computing these hash tables for increasing n , starting from n=1 and continuing up to e.g. n=4.

  4. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    Product (mathematics) In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors. For example, 21 is the product of 3 and 7 (the result of multiplication), and is the product of and (indicating that the two factors should be multiplied together).

  5. Chinese multiplication table - Wikipedia

    en.wikipedia.org/wiki/Chinese_multiplication_table

    The Chinese multiplication table consists of eighty-one terms. It was often called the nine-nine table, or simply nine-nine, because in ancient times, the nine nine table started with 9 × 9: [ 2] nine nines beget eighty-one, eight nines beget seventy-two ... seven nines beget sixty three, etc. two ones beget two.

  6. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    t. e. The number π (/ paɪ /; spelled out as " pi ") is a mathematical constant that is the ratio of a circle 's circumference to its diameter, approximately equal to 3.14159. The number π appears in many formulae across mathematics and physics.

  7. Lagrange's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_four-square_theorem

    Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as a sum of four non-negative integer squares. [ 1] That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum ...

  8. 84 (number) - Wikipedia

    en.wikipedia.org/wiki/84_(number)

    It is the third (or second) dodecahedral number, [4] and the sum of the first seven triangular numbers (1, 3, 6, 10, 15, 21, 28), which makes it the seventh tetrahedral number. [ 5 ] The twenty-second unique prime in decimal , with notably different digits than its preceding (and known following) terms in the same sequence , contains a total of ...

  9. Jacobi's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_four-square_theorem

    In particular, for a prime number p we have the explicit formula r 4 (p) = 8(p + 1). [1] Some values of r 4 (n) occur infinitely often as r 4 (n) = r 4 (2 m n) whenever n is even. The values of r 4 (n) can be arbitrarily large: indeed, r 4 (n) is infinitely often larger than ⁡. [1]