Search results
Results from the WOW.Com Content Network
Aspect ratio (aeronautics) An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing ...
Chords on a swept-wing. In aeronautics, the chord is an imaginary straight line joining the leading edge and trailing edge of an aerofoil. The chord length is the distance between the trailing edge and the point where the chord intersects the leading edge. [1][2] The point on the leading edge used to define the chord may be the surface point of ...
The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...
The Oswald efficiency is defined for the cases where the overall coefficient of drag of the wing or airplane has a constant+quadratic dependence on the aircraft lift coefficient. where. For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85 ...
However, since wingspan can be increased while decreasing aspect ratio, or vice versa, the apparent relationship between aspect ratio and induced drag does not always hold. [ 2 ] [ 9 ] : 489 For a typical twin-engine wide-body aircraft at cruise speed, induced drag is the second-largest component of total drag, accounting for approximately 37% ...
Lift and drag are the two components of the total aerodynamic force acting on an aerofoil or aircraft. In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under ...
The Lanchester-Prandtl lifting-line theory[1] is a mathematical model in aerodynamics that predicts lift distribution over a three-dimensional wing from the wing's geometry. [2] The theory was expressed independently [3] by Frederick W. Lanchester in 1907, [4] and by Ludwig Prandtl in 1918–1919 [5] after working with Albert Betz and Max Munk.
The Whitcomb area rule, named after NACA engineer Richard Whitcomb and also called the transonic area rule, is a design procedure used to reduce an aircraft 's drag at transonic speeds which occur between about Mach 0.75 and 1.2. For supersonic speeds a different procedure called the supersonic area rule, developed by NACA aerodynamicist Robert ...