enow.com Web Search

  1. Ads

    related to: solving equations with negative numbers

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Quadratic equation. In mathematics, a quadratic equation (from Latin quadratus ' square ') is an equation that can be rearranged in standard form as [1] where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)

  3. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    The Collatz conjecture is: This process will eventually reach the number 1, regardless of which positive integer is chosen initially. That is, for each , there is some with . If the conjecture is false, it can only be because there is some starting number which gives rise to a sequence that does not contain 1.

  4. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    Solving an equation numerically means that only numbers are admitted as solutions. Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y ...

  5. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    Quadratic formula. The roots of the quadratic function y = ⁠ 1 2 ⁠x2 − 3x + ⁠ 5 2 ⁠ are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  6. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Fermat–Catalan conjecture. In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many ...

  7. Chinese mathematics - Wikipedia

    en.wikipedia.org/wiki/Chinese_mathematics

    Chapter eight deals with solving determinate and indeterminate simultaneous linear equations using positive and negative numbers, with one problem dealing with solving four equations in five unknowns. [20] The Nine Chapters solves systems of equations using methods similar to the modern Gaussian elimination and back substitution. [20]

  1. Ads

    related to: solving equations with negative numbers