Search results
Results from the WOW.Com Content Network
The planet Jupiter is a slight oblate spheroid with a flattening of 0.06487. The oblate spheroid is the approximate shape of rotating planets and other celestial bodies, including Earth, Saturn, Jupiter, and the quickly spinning star Altair. Saturn is the most oblate planet in the Solar System, with a flattening of 0.09796. [5]
Figure 1: Coordinate isosurfaces for a point P (shown as a black sphere) in oblate spheroidal coordinates (μ, ν, φ). The z-axis is vertical, and the foci are at ±2. The red oblate spheroid (flattened sphere) corresponds to μ = 1, whereas the blue half-hyperboloid corresponds to ν = 45°.
Thus, geodesy represents the figure of the Earth as an oblate spheroid. The oblate spheroid, or oblate ellipsoid, is an ellipsoid of revolution obtained by rotating an ellipse about its shorter axis. It is the regular geometric shape that most nearly approximates the shape of the Earth. A spheroid describing the figure of the Earth or other ...
which, as follows from basic trigonometric identities, are equivalent expressions (i.e. the formula for S oblate can be used to calculate the surface area of a prolate ellipsoid and vice versa). In both cases e may again be identified as the eccentricity of the ellipse formed by the cross section through the symmetry axis.
In 1687 Isaac Newton published the Principia in which he included a proof that a rotating self-gravitating fluid body in equilibrium takes the form of a flattened ("oblate") ellipsoid of revolution, generated by an ellipse rotated around its minor diameter; a shape which he termed an oblate spheroid. [2] [3]
For a Maclaurin spheroid of eccentricity greater than 0.812670, [3] a Jacobi ellipsoid of the same angular momentum has lower total energy. If such a spheroid is composed of a viscous fluid (or in the presence of gravitational radiation reaction), and if it suffers a perturbation which breaks its rotational symmetry, then it will gradually elongate into the Jacobi ellipsoidal form, while ...
The WGS 84 datum surface is an oblate spheroid with equatorial radius a = 6 378 137 m at the equator and flattening f = 1 ⁄ 298.257 223 563. The refined value of the WGS 84 gravitational constant (mass of Earth's atmosphere included) is GM = 3.986 004 418 × 10 14 m 3 /s 2. The angular velocity of the Earth is defined to be ω = 72.921 15 × ...
In geometry and mathematical biology, a biconcave disc — also referred to as a discocyte [1] — is a geometric shape resembling an oblate spheroid with two concavities on the top and on the bottom. Biconcave discs appear in the study of cell biology, as an approximation to the shape of certain cells, including red blood cells.