enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    The planet Jupiter is a slight oblate spheroid with a flattening of 0.06487. The oblate spheroid is the approximate shape of rotating planets and other celestial bodies, including Earth, Saturn, Jupiter, and the quickly spinning star Altair. Saturn is the most oblate planet in the Solar System, with a flattening of 0.09796. [5]

  3. Oblate spheroidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Oblate_spheroidal_coordinates

    Figure 1: Coordinate isosurfaces for a point P (shown as a black sphere) in oblate spheroidal coordinates (μ, ν, φ). The z-axis is vertical, and the foci are at ±2. The red oblate spheroid (flattened sphere) corresponds to μ = 1, whereas the blue half-hyperboloid corresponds to ν = 45°.

  4. Figure of the Earth - Wikipedia

    en.wikipedia.org/wiki/Figure_of_the_Earth

    Thus, geodesy represents the figure of the Earth as an oblate spheroid. The oblate spheroid, or oblate ellipsoid, is an ellipsoid of revolution obtained by rotating an ellipse about its shorter axis. It is the regular geometric shape that most nearly approximates the shape of the Earth. A spheroid describing the figure of the Earth or other ...

  5. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    which, as follows from basic trigonometric identities, are equivalent expressions (i.e. the formula for S oblate can be used to calculate the surface area of a prolate ellipsoid and vice versa). In both cases e may again be identified as the eccentricity of the ellipse formed by the cross section through the symmetry axis.

  6. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    In 1687 Isaac Newton published the Principia in which he included a proof that a rotating self-gravitating fluid body in equilibrium takes the form of a flattened ("oblate") ellipsoid of revolution, generated by an ellipse rotated around its minor diameter; a shape which he termed an oblate spheroid. [2] [3]

  7. Maclaurin spheroid - Wikipedia

    en.wikipedia.org/wiki/MacLaurin_spheroid

    For a Maclaurin spheroid of eccentricity greater than 0.812670, [3] a Jacobi ellipsoid of the same angular momentum has lower total energy. If such a spheroid is composed of a viscous fluid (or in the presence of gravitational radiation reaction), and if it suffers a perturbation which breaks its rotational symmetry, then it will gradually elongate into the Jacobi ellipsoidal form, while ...

  8. World Geodetic System - Wikipedia

    en.wikipedia.org/wiki/World_Geodetic_System

    The WGS 84 datum surface is an oblate spheroid with equatorial radius a = 6 378 137 m at the equator and flattening f = 1 ⁄ 298.257 223 563. The refined value of the WGS 84 gravitational constant (mass of Earth's atmosphere included) is GM = 3.986 004 418 × 10 14 m 3 /s 2. The angular velocity of the Earth is defined to be ω = 72.921 15 × ...

  9. Biconcave disc - Wikipedia

    en.wikipedia.org/wiki/Biconcave_disc

    In geometry and mathematical biology, a biconcave disc — also referred to as a discocyte [1] — is a geometric shape resembling an oblate spheroid with two concavities on the top and on the bottom. Biconcave discs appear in the study of cell biology, as an approximation to the shape of certain cells, including red blood cells.