enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Erdős distinct distances problem - Wikipedia

    en.wikipedia.org/wiki/Erdős_distinct_distances...

    In discrete geometry, the Erdős distinct distances problem states that every set of points in the plane has a nearly-linear number of distinct distances. It was posed by Paul Erdős in 1946 [ 1 ] [ 2 ] and almost proven by Larry Guth and Nets Katz in 2015.

  3. The Erdős Distance Problem - Wikipedia

    en.wikipedia.org/wiki/The_Erdős_Distance_Problem

    The Erdős Distance Problem consists of twelve chapters and three appendices. [5]After an introductory chapter describing the formulation of the problem by Paul Erdős and Erdős's proof that the number of distances is always at least proportional to , the next six chapters cover the two-dimensional version of the problem.

  4. Closest pair of points problem - Wikipedia

    en.wikipedia.org/wiki/Closest_pair_of_points_problem

    The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...

  5. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...

  6. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.

  7. Cost distance analysis - Wikipedia

    en.wikipedia.org/wiki/Cost_distance_analysis

    The various problems, algorithms, and tools of cost distance analysis operate over an unconstrained two-dimensional space, meaning that a path could be of any shape. Similar cost optimization problems can also arise in a constrained space, especially a one-dimensional linear network such as a road or telecommunications network.

  8. Falconer's conjecture - Wikipedia

    en.wikipedia.org/wiki/Falconer's_conjecture

    In geometric measure theory, Falconer's conjecture, named after Kenneth Falconer, is an unsolved problem concerning the sets of Euclidean distances between points in compact-dimensional spaces. Intuitively, it states that a set of points that is large in its Hausdorff dimension must determine a set of distances that is large in measure .

  9. Fermi problem - Wikipedia

    en.wikipedia.org/wiki/Fermi_problem

    A Fermi problem (or Fermi question, Fermi quiz), also known as an order-of-magnitude problem, is an estimation problem in physics or engineering education, designed to teach dimensional analysis or approximation of extreme scientific calculations. Fermi problems are usually back-of-the-envelope calculations.