enow.com Web Search

  1. Ad

    related to: simple distance problems 6th
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Assessment

      Creative ways to see what students

      know & help them with new concepts.

    • Try Easel

      Level up learning with interactive,

      self-grading TPT digital resources.

    • Lessons

      Powerpoints, pdfs, and more to

      support your classroom instruction.

    • Resources on Sale

      The materials you need at the best

      prices. Shop limited time offers.

Search results

  1. Results from the WOW.Com Content Network
  2. The Erdős Distance Problem - Wikipedia

    en.wikipedia.org/wiki/The_Erdős_Distance_Problem

    The Erdős Distance Problem consists of twelve chapters and three appendices. [5]After an introductory chapter describing the formulation of the problem by Paul Erdős and Erdős's proof that the number of distances is always at least proportional to , the next six chapters cover the two-dimensional version of the problem.

  3. Falconer's conjecture - Wikipedia

    en.wikipedia.org/wiki/Falconer's_conjecture

    Falconer (1985) proved that Borel sets with Hausdorff dimension greater than (+) / have distance sets with nonzero measure. [2] He motivated this result as a multidimensional generalization of the Steinhaus theorem, a previous result of Hugo Steinhaus proving that every set of real numbers with nonzero measure must have a difference set that contains an interval of the form (,) for some >. [3]

  4. Erdős distinct distances problem - Wikipedia

    en.wikipedia.org/wiki/Erdős_distinct_distances...

    In discrete geometry, the Erdős distinct distances problem states that every set of points in the plane has a nearly-linear number of distinct distances. It was posed by Paul Erdős in 1946 [ 1 ] [ 2 ] and almost proven by Larry Guth and Nets Katz in 2015.

  5. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    This class of problem is associated with Rank revealing QR factorizations and D optimal experimental design. [39] Minimal addition chains for sequences. [40] The complexity of minimal addition chains for individual numbers is unknown. [41] Modal logic S5-Satisfiability; Pancake sorting distance problem for strings [42]

  6. Distance geometry - Wikipedia

    en.wikipedia.org/wiki/Distance_geometry

    Distance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. [ 1 ] [ 2 ] [ 3 ] More abstractly, it is the study of semimetric spaces and the isometric transformations between them.

  7. Erdős–Ulam problem - Wikipedia

    en.wikipedia.org/wiki/Erdős–Ulam_problem

    If the Erdős–Ulam problem has a positive solution, it would provide a counterexample to the Bombieri–Lang [4] [5] conjecture and to the abc conjecture. [6] It would also solve Harborth's conjecture, on the existence of drawings of planar graphs in which all distances are integers. If a dense rational-distance set exists, any straight-line ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  1. Ad

    related to: simple distance problems 6th