Search results
Results from the WOW.Com Content Network
Stable sorting algorithms maintain the relative order of records with equal keys (i.e. values). That is, a sorting algorithm is stable if whenever there are two records R and S with the same key and with R appearing before S in the original list, R will appear before S in the sorted list.
An example of stable sort on playing cards. When the cards are sorted by rank with a stable sort, the two 5s must remain in the same order in the sorted output that they were originally in. When they are sorted with a non-stable sort, the 5s may end up in the opposite order in the sorted output.
Timsort is a stable sorting algorithm (order of elements with same key is kept) and strives to perform balanced merges (a merge thus merges runs of similar sizes). In order to achieve sorting stability, only consecutive runs are merged. Between two non-consecutive runs, there can be an element with the same key inside the runs.
In computer science, a stable sorting algorithm preserves the order of records with equal keys. In numerical analysis, a numerically stable algorithm avoids magnifying small errors. An algorithm is stable if the result produced is relatively insensitive to perturbations during computation.
Merge sort is more efficient than quicksort for some types of lists if the data to be sorted can only be efficiently accessed sequentially, and is thus popular in languages such as Lisp, where sequentially accessed data structures are very common. Unlike some (efficient) implementations of quicksort, merge sort is a stable sort.
For example, addresses could be sorted using the city as primary sort key, and the street as secondary sort key. If the sort key values are totally ordered, the sort key defines a weak order of the items: items with the same sort key are equivalent with respect to sorting. See also stable sorting. If different items have different sort key ...
Shellsort, also known as Shell sort or Shell's method, is an in-place comparison sort. It can be seen as either a generalization of sorting by exchange (bubble sort) or sorting by insertion (insertion sort). [3] The method starts by sorting pairs of elements far apart from each other, then progressively reducing the gap between elements to be ...
There is a new sort(1), headsort(1), using an algorthim with opposite speed properties of merge sort that when sorting more than one column can finish in 1/2 the time, or when only needing to begin streaming the sorted data can finish in 1/2 the time (thus head), and can fork sorting jobs better (though neither does by default): but more often ...