Search results
Results from the WOW.Com Content Network
The ratio of two extensive properties of the same object or system is an intensive property. For example, the ratio of an object's mass and volume, which are two extensive properties, is density, which is an intensive property. [10] More generally properties can be combined to give new properties, which may be called derived or composite ...
On the other hand, a polyatomic gas molecule (consisting of two or more atoms bound together) can store heat energy in additional degrees of freedom. Its kinetic energy contributes to the heat capacity in the same way as monatomic gases, but there are also contributions from the rotations of the molecule and vibration of the atoms relative to ...
Substituting from the ideal gas equation gives finally: = where n = number of moles of gas in the thermodynamic system under consideration and R = universal gas constant. On a per mole basis, the expression for difference in molar heat capacities becomes simply R for ideal gases as follows:
The molar heat capacity is an "intensive" property of a substance, an intrinsic characteristic that does not depend on the size or shape of the amount in consideration. (The qualifier "specific" in front of an extensive property often indicates an intensive property derived from it. [3])
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
The intensive (force) variable is the derivative of the internal energy with respect to the extensive (displacement) variable, while all other extensive variables are held constant. The thermodynamic square can be used as a tool to recall and derive some of the thermodynamic potentials based on conjugate variables.
Some constants, such as the ideal gas constant, R, do not describe the state of a system, and so are not properties. On the other hand, some constants, such as K f (the freezing point depression constant, or cryoscopic constant ), depend on the identity of a substance, and so may be considered to describe the state of a system, and therefore ...
The state of a simple compressible system is completely specified by two independent, intensive properties [2] A more general statement of the state postulate says: the state of a simple system is completely specified by r+1 independent, intensive properties where r is the number of significant work interactions. [1] [3]