Search results
Results from the WOW.Com Content Network
Benzene, the most widely recognized aromatic compound with six delocalized π-electrons (4n + 2, for n = 1). In organic chemistry , Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4 n + 2 π-electrons , where n is a non-negative integer .
Benzene is an organic chemical compound with the molecular formula C 6 H 6. The benzene molecule is composed of six carbon atoms joined in a planar hexagonal ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms, benzene is classed as a hydrocarbon.
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
The method predicts how many energy levels exist for a given molecule, which levels are degenerate and it expresses the molecular orbital energies in terms of two parameters, called α, the energy of an electron in a 2p orbital, and β, the interaction energy between two 2p orbitals (the extent to which an electron is stabilized by allowing it ...
Two different resonance forms of benzene (top) combine to produce an average structure (bottom). In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone.
Aromatization is a chemical reaction in which an aromatic system is formed from a single nonaromatic precursor. Typically aromatization is achieved by dehydrogenation of existing cyclic compounds, illustrated by the conversion of cyclohexane into benzene. Aromatization includes the formation of heterocyclic systems. [1]
An aromatic π-sextet can be represented by a circle, as in the case of the anthracene molecule (below). Clar's rule states that for a benzenoid polycyclic aromatic hydrocarbon (i.e. one with only hexagonal rings), the resonance structure with the largest number of disjoint aromatic π-sextets is the most important to characterize its chemical ...
Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules ("substituted aromatics"). Typical simple aromatic compounds are benzene, indole, and pyridine. [1] [2] Simple aromatic rings can be heterocyclic if they contain non-carbon ring atoms, for example, oxygen, nitrogen, or sulfur.