Search results
Results from the WOW.Com Content Network
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the special case of an isosceles triangle by modern definition, creating more special properties.
Any two equilateral triangles are similar. Two triangles, both similar to a third triangle, are similar to each other (transitivity of similarity of triangles). Corresponding altitudes of similar triangles have the same ratio as the corresponding sides. Two right triangles are similar if the hypotenuse and one other side have lengths in the ...
Triangle – 3 sides Acute triangle; Equilateral triangle; Heptagonal triangle; Isosceles triangle. Golden Triangle; Obtuse triangle; Rational triangle; Heronian triangle. Pythagorean triangle; Isosceles heronian triangle; Primitive Heronian triangle; Right triangle. 30-60-90 triangle; Isosceles right triangle; Kepler triangle; Scalene triangle ...
All pairs of congruent triangles are also similar, but not all pairs of similar triangles are congruent. Given two congruent triangles, all pairs of corresponding interior angles are equal in measure, and all pairs of corresponding sides have the same length. This is a total of six equalities, but three are often sufficient to prove congruence ...
These properties apply to all regular polygons, whether convex or star: A regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon.
Except in the triangle case, an equilateral polygon does not need to also be equiangular (have all angles equal), but if it does then it is a regular polygon. If the number of sides is at least four, an equilateral polygon does not need to be a convex polygon: it could be concave or even self-intersecting.
Regular: both equilateral and equiangular. Cyclic: all corners lie on a single circle, called the circumcircle. Tangential: all sides are tangent to an inscribed circle. Isogonal or vertex-transitive: all corners lie within the same symmetry orbit. The polygon is also cyclic and equiangular. Isotoxal or edge-transitive: all sides lie within the ...
All equilateral kites are rhombi, and all equiangular kites are squares. When classified partitionally, rhombi and squares would not be kites, because they belong to a different class of quadrilaterals; similarly, the right kites discussed below would not be kites. The remainder of this article follows a hierarchical classification; rhombi ...