Search results
Results from the WOW.Com Content Network
If the objective function and all of the hard constraints are linear and some hard constraints are inequalities, then the problem is a linear programming problem. This can be solved by the simplex method , which usually works in polynomial time in the problem size but is not guaranteed to, or by interior point methods which are guaranteed to ...
If an inequality constraint holds as a strict inequality at the optimal point (that is, does not hold with equality), the constraint is said to be non-binding, as the point could be varied in the direction of the constraint, although it would not be optimal to do so. Under certain conditions, as for example in convex optimization, if a ...
In mathematical optimization, the active-set method is an algorithm used to identify the active constraints in a set of inequality constraints. The active constraints are then expressed as equality constraints, thereby transforming an inequality-constrained problem into a simpler equality-constrained subproblem.
The theory of constraints (TOC) is a management paradigm that views any manageable system as being limited in achieving more of its goals by a very small number of constraints. There is always at least one constraint, and TOC uses a focusing process to identify the constraint and restructure the rest of the organization around it.
Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below). Many real-world and theoretical problems may be modeled in this general framework. Since the following is valid:
Changes in one constraint necessitate changes in others to compensate or quality will suffer. For example, a project can be completed faster by increasing budget or cutting scope. Similarly, increasing scope may require equivalent increases in budget and schedule. Cutting budget without adjusting schedule or scope will lead to lower quality.
Slack variables give an embedding of a polytope into the standard f-orthant, where is the number of constraints (facets of the polytope). This map is one-to-one (slack variables are uniquely determined) but not onto (not all combinations can be realized), and is expressed in terms of the constraints (linear functionals, covectors).
It gets rid of the inequality, but introduces the issue that the penalty function c, and therefore the objective function f(x) + c(x), is discontinuous, preventing the use of calculus to solve it. A barrier function, now, is a continuous approximation g to c that tends to infinity as x approaches b from above.