Search results
Results from the WOW.Com Content Network
In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. [1]
g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function.
If the objective function and all of the hard constraints are linear and some hard constraints are inequalities, then the problem is a linear programming problem. This can be solved by the simplex method , which usually works in polynomial time in the problem size but is not guaranteed to, or by interior point methods which are guaranteed to ...
Then the fundamental theorem of linear inequalities implies (for feasible problems) that for every vertex x * of the LP feasible region, there exists a set of d (or fewer) inequality constraints from the LP such that, when we treat those d constraints as equalities, the unique solution is x *. Thereby we can study these vertices by means of ...
Geometric programming is a technique whereby objective and inequality constraints expressed as posynomials and equality constraints as monomials can be transformed into a convex program. Integer programming studies linear programs in which some or all variables are constrained to take on integer values. This is not convex, and in general much ...
The theory of constraints (TOC) is a management paradigm that views any manageable system as being limited in achieving more of its goals by a very small number of constraints. There is always at least one constraint, and TOC uses a focusing process to identify the constraint and restructure the rest of the organization around it.
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
A linear programming problem seeks to optimize (find a maximum or minimum value) a function (called the objective function) subject to a number of constraints on the variables which, in general, are linear inequalities. [6] The list of constraints is a system of linear inequalities.