Search results
Results from the WOW.Com Content Network
The Guide to the Expression of Uncertainty in Measurement (GUM) [1] is a document published by the JCGM that establishes general rules for evaluating and expressing uncertainty in measurement. [ 2 ] The GUM provides a way to express the perceived quality of the result of a measurement.
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
This statistics -related article is a stub. You can help Wikipedia by expanding it.
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
The measurement uncertainty budget is determined once and remains constant. With a constant measurement uncertainty budget, complete data records can now be acquired. The measurement uncertainty applies to every single measurement point. If the measurement uncertainty is constant, this simplifies the further processing based on the data records.
The procedure is to measure the pendulum length L and then make repeated measurements of the period T, each time starting the pendulum motion from the same initial displacement angle θ. The replicated measurements of T are averaged and then used in Eq(2) to obtain an estimate of g.
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.