enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    In physics, sometimes units of measurement in which c = 1 are used to simplify equations. Time in a "moving" reference frame is shown to run more slowly than in a "stationary" one by the following relation (which can be derived by the Lorentz transformation by putting ∆x′ = 0, ∆τ = ∆t′):

  3. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [ 1 ] and the analytical solution was provided by Harry Bateman in 1910.

  4. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    Many other fundamental quantities in science are time derivatives of one another: force is the time derivative of momentum; power is the time derivative of energy; electric current is the time derivative of electric charge; and so on. A common occurrence in physics is the time derivative of a vector, such as velocity or displacement. In dealing ...

  7. Washburn's equation - Wikipedia

    en.wikipedia.org/wiki/Washburn's_equation

    The equation is named after Edward Wight Washburn; [1] also known as Lucas–Washburn equation, considering that Richard Lucas [2] wrote a similar paper three years earlier, or the Bell-Cameron-Lucas-Washburn equation, considering J.M. Bell and F.K. Cameron's discovery of the form of the equation in 1906.

  8. Lists of physics equations - Wikipedia

    en.wikipedia.org/wiki/Lists_of_physics_equations

    In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.

  9. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The time-dependent Schrödinger equation described above predicts that wave functions can form standing waves, called stationary states. These states are particularly important as their individual study later simplifies the task of solving the time-dependent Schrödinger equation for any state. Stationary states can also be described by a ...