Search results
Results from the WOW.Com Content Network
Floquet theory shows stability in Hill differential equation (introduced by George William Hill) approximating the motion of the moon as a harmonic oscillator in a periodic gravitational field. Bond softening and bond hardening in intense laser fields can be described in terms of solutions obtained from the Floquet theorem.
A periodic motion is a closed curve in phase space. That is, for some period, ′ = (,), = (). The textbook example of a periodic motion is the undamped pendulum.. If the phase space is periodic in one or more coordinates, say () = (+), with a vector [clarification needed], then there is a second kind of periodic motions defined by
Hill's equation is an important example in the understanding of periodic differential equations. Depending on the exact shape of f ( t ) {\displaystyle f(t)} , solutions may stay bounded for all time, or the amplitude of the oscillations in solutions may grow exponentially. [ 3 ]
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Thus simple harmonic motion is a type of periodic motion. If energy is lost in the system, then the mass exhibits damped oscillation. Note if the real space and phase space plot are not co-linear, the phase space motion becomes elliptical. The area enclosed depends on the amplitude and the maximum momentum.
The pressure gradient does not enter into the problem. The initial, no-slip condition on the wall is (,) = , (,) =, and the second boundary condition is due to the fact that the motion at = is not felt at infinity. The flow is only due to the motion of the plate, there is no imposed pressure gradient.
The second step is discretization, where the weak form is discretized in a finite-dimensional space. After this second step, we have concrete formulae for a large but finite-dimensional linear problem whose solution will approximately solve the original BVP. This finite-dimensional problem is then implemented on a computer.