enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_continuation

    A periodic motion is a closed curve in phase space. That is, for some period, ′ = (,), = (). The textbook example of a periodic motion is the undamped pendulum.. If the phase space is periodic in one or more coordinates, say () = (+), with a vector [clarification needed], then there is a second kind of periodic motions defined by

  3. Poincaré–Lindstedt method - Wikipedia

    en.wikipedia.org/wiki/Poincaré–Lindstedt_method

    In perturbation theory, the Poincaré–Lindstedt method or Lindstedt–Poincaré method is a technique for uniformly approximating periodic solutions to ordinary differential equations, when regular perturbation approaches fail.

  4. Hill differential equation - Wikipedia

    en.wikipedia.org/wiki/Hill_differential_equation

    Hill's equation is an important example in the understanding of periodic differential equations. Depending on the exact shape of f ( t ) {\displaystyle f(t)} , solutions may stay bounded for all time, or the amplitude of the oscillations in solutions may grow exponentially. [ 3 ]

  5. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    The first row of coefficients at the bottom of the table gives the fifth-order accurate method, and the second row gives the fourth-order accurate method. This shows the computational time in real time used during a 3-body simulation evolved with the Runge-Kutta-Fehlberg method.

  6. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details

  7. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The nonlinear term makes this a very difficult problem to solve analytically (a lengthy implicit solution may be found which involves elliptic integrals and roots of cubic polynomials). Issues with the actual existence of solutions arise for R > 1.41 {\textstyle R>1.41} (approximately; this is not √ 2 ), the parameter R {\textstyle R} being ...

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Rössler attractor - Wikipedia

    en.wikipedia.org/wiki/Rössler_attractor

    It seems from numerical experimentation that there is a unique periodic orbit for all positive winding numbers. This lack of degeneracy likely stems from the problem's lack of symmetry. The attractor can be dissected into easier to digest invariant manifolds: 1D periodic orbits and the 2D stable and unstable manifolds of periodic