Search results
Results from the WOW.Com Content Network
The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.
Usually the term "Markov chain" is reserved for a process with a discrete set of times, that is, a discrete-time Markov chain (DTMC), [11] but a few authors use the term "Markov process" to refer to a continuous-time Markov chain (CTMC) without explicit mention.
A process with this property is said to be Markov or Markovian and known as a Markov process. Two famous classes of Markov process are the Markov chain and Brownian motion. Note that there is a subtle, often overlooked and very important point that is often missed in the plain English statement of the definition. Namely that the statespace of ...
Suppose that one starts with $10, and one wagers $1 on an unending, fair, coin toss indefinitely, or until all of the money is lost. If represents the number of dollars one has after n tosses, with =, then the sequence {:} is a Markov process. If one knows that one has $12 now, then it would be expected that with even odds, one will either have ...
The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is
In probability theory, Kelly's lemma states that for a stationary continuous-time Markov chain, a process defined as the time-reversed process has the same stationary distribution as the forward-time process. [1] The theorem is named after Frank Kelly. [2] [3] [4] [5]
This category is for articles about the theory of Markov chains and processes, and associated processes. See Category:Markov models for models for specific applications that make use of Markov processes.
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.