Search results
Results from the WOW.Com Content Network
Aliasing can be caused either by the sampling stage or the reconstruction stage; these may be distinguished by calling sampling aliasing prealiasing and reconstruction aliasing postaliasing. [1] Temporal aliasing is a major concern in the sampling of video and audio signals.
The sampling theorem also applies to post-processing digital images, such as to up or down sampling. Effects of aliasing, blurring, and sharpening may be adjusted with digital filtering implemented in software, which necessarily follows the theoretical principles.
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
An anti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a signal to satisfy the Nyquist–Shannon sampling theorem over the band of interest. Since the theorem states that unambiguous reconstruction of the signal from its samples is possible when the power of frequencies above the Nyquist frequency is ...
Signal sampling representation. The continuous signal S(t) is represented with a green colored line while the discrete samples are indicated by the blue vertical lines.. In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal.
The sampling theorem states that sampling frequency would have to be greater than 200 Hz. Sampling at four times that rate requires a sampling frequency of 800 Hz. This gives the anti-aliasing filter a transition band of 300 Hz ((f s /2) − B = (800 Hz/2) − 100 Hz = 300 Hz) instead of 0 Hz if the sampling frequency was 200 Hz. Achieving an ...
When sampling is performed without removing this part of the signal, it causes undesirable artifacts such as black-and-white noise. In signal acquisition and audio, anti-aliasing is often done using an analog anti-aliasing filter to remove the out-of-band component of the input signal prior to sampling with an analog-to-digital converter.
Sampling, for instance, produces leakage, which we call aliases of the original spectral component. For Fourier transform purposes, sampling is modeled as a product between s(t) and a Dirac comb function. The spectrum of a product is the convolution between S(f) and another function, which inevitably creates the new frequency components.