enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center .

  3. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    If also d = 0, the cyclic quadrilateral becomes a triangle and the formula is reduced to Heron's formula. The cyclic quadrilateral has maximal area among all quadrilaterals having the same side lengths (regardless of sequence). This is another corollary to Bretschneider's formula. It can also be proved using calculus. [12]

  4. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    Euler's theorem: = | | = In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).

  5. Carnot's theorem (inradius, circumradius) - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem_(inradius...

    where r is the inradius and R is the circumradius of the triangle. Here the sign of the distances is taken to be negative if and only if the open line segment DX (X = F, G, H) lies completely outside the triangle. In the diagram, DF is negative and both DG and DH are positive. The theorem is named after Lazare Carnot (1753–1823).

  6. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    This formula cannot be used if the quadrilateral is a right kite, since the denominator is zero in that case. If M, N are the midpoints of the diagonals, and E, F are the intersection points of the extensions of opposite sides, then the area of a bicentric quadrilateral is given by

  7. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    The sum of the squared distances from the vertices of a regular n-gon to any point on its circumcircle equals 2nR 2 where R is the circumradius. [4]: p. 73 The sum of the squared distances from the midpoints of the sides of a regular n-gon to any point on the circumcircle is 2nR 2 − ⁠ 1 / 4 ⁠ ns 2, where s is the side length and R is the ...

  8. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = ⁠ √ 8φ+7 / 2 ⁠ = ⁠ √ 11+4 √ 5 / 2 ⁠ ≈ 2.233.

  9. Circumscribed circle - Wikipedia

    en.wikipedia.org/wiki/Circumscribed_circle

    In geometry, a circumscribed circle for a set of points is a circle passing through each of them. Such a circle is said to circumscribe the points or a polygon formed from them; such a polygon is said to be inscribed in the circle.