Search results
Results from the WOW.Com Content Network
Phenylboronic acid or benzeneboronic acid, abbreviated as PhB(OH) 2 where Ph is the phenyl group C 6 H 5 - and B(OH) 2 is a boronic acid containing a phenyl substituent and two hydroxyl groups attached to boron. Phenylboronic acid is a white powder and is commonly used in organic synthesis.
They reported the reaction of phenylboronic acid in water (140-150 °C) to afford the protodeboronated product, benzene, after 40 hours. Initial synthetic applications of protodeboronation were found alongside the discovery of the hydroboration reaction, in which sequential hydroboration-protodeboronation reactions were used to convert alkynes ...
Protodeboronation is a chemical reaction involving the protonolysis of a boronic acid (or other organoborane compound) in which a carbon-boron bond is broken and replaced with a carbon-hydrogen bond. Protodeboronation is a well-known undesired side reaction , and frequently associated with metal-catalysed coupling reactions that utilise boronic ...
Active site of T. thermophilus hpaB, showing hydrogen bonding of hpaB catalytic residues to 4-hydroxyphenylacetate and to the peroxide bound to FADH 2. (Note: this structure was generated using oxidized FAD in place of FADH 2; the magenta sphere representing oxygen here is actually a water molecule believed to occupy the space oxygen does when the flavin hydroxyperoxide is present.
The hydrogen is dangerous and could ignite with the oxygen in the air, so the chemical procedure should be done in an inert atmosphere (e.g., nitrogen). Deprotonation can be an important step in a chemical reaction. Acid–base reactions typically occur faster than any other step which may determine the product of a reaction. The conjugate base ...
Hydroxylation improves water‐solubility, as well as affecting their structure and function. The most frequently hydroxylated amino acid residue in human proteins is proline . This is because collagen makes up about 25–35% of the protein in our bodies and contains a hydroxyproline at almost every 3rd residue in its amino acid sequence.
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
The reaction thus provides a more stereospecific and complementary regiochemical alternative to other hydration reactions such as acid-catalyzed addition and the oxymercuration–reduction process. The reaction was first reported by Herbert C. Brown in the late 1950s [2] and it was recognized in his receiving the Nobel Prize in Chemistry in 1979.