Search results
Results from the WOW.Com Content Network
The hyperpolarization following an inhibitory stimulus causes a further decrease in voltage within the neuron below the resting potential. By hyperpolarizing a neuron, an inhibitory stimulus results in a greater negative charge that must be overcome for depolarization to occur.
Cortical spreading depression (CSD) or spreading depolarization (SD) is a wave of electrophysiological hyperactivity followed by a wave of inhibition. [3] Spreading depolarization describes a phenomenon characterized by the appearance of depolarization waves of the neurons and neuroglia [ 4 ] that propagates across the cortex at a velocity of 1 ...
During single action potentials, transient depolarization of the membrane opens more voltage-gated K + channels than are open in the resting state, many of which do not close immediately when the membrane returns to its normal resting voltage. This can lead to an "undershoot" of the membrane potential to values that are more polarized ...
The endothelium maintains vascular homeostasis through the release of active vasodilators.Although nitric oxide (NO) is recognized as the primary factor at level of arteries, increased evidence for the role of another endothelium-derived vasodilator known as endothelium-derived hyperpolarizing factor (EDHF) has accumulated in the last years.
A nerve impulse causes Na + to enter the cell, resulting in (b) depolarization. At the peak action potential, K + channels open and the cell becomes (c) hyperpolarized. Voltage gated ion channels respond to changes in the membrane potential. Voltage gated potassium, chloride and sodium channels are key components in the generation of the action ...
In contrast, inflammatory stimuli also activate NF-κB-induced expression of the deubiquitinase A20 , which has been shown to intrinsically repair the endothelial barrier. [26] One of the main mechanisms of endothelial dysfunction is the diminishing of nitric oxide, often due to high levels of asymmetric dimethylarginine, which interfere with ...
The rapid depolarization period typically lasts 3–5 ms. Depolarization is followed by the plateau phase, in which membrane potential declines relatively slowly. This is due in large part to the opening of the slow Ca 2+ channels, allowing Ca 2+ to enter the cell while few K + channels are open, allowing K + to exit the cell. The relatively ...
An initial depolarizing current leads to the opening of the voltage-dependent calcium channels, ultimately resulting in synchronization of individual calcium levels. When patch clamp recordings are conducted, depolarization occurs in the endothelial layer at the same time as the underlying vascular smooth muscle.