Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
The Dirac delta function, although not strictly a probability distribution, is a limiting form of many continuous probability functions. It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it ...
The geometric distribution gives the probability that the first occurrence of success requires independent trials, each with success probability . If the probability of success on each trial is p {\displaystyle p} , then the probability that the k {\displaystyle k} -th trial is the first success is
Let be a discrete random variable with probability mass function depending on a parameter .Then the function = = (=),considered as a function of , is the likelihood function, given the outcome of the random variable .
A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.
[4]: 250 So, for example, if we have 3 clusters with 10, 20 and 30 units each, then the chance of selecting the first cluster will be 1/6, the second would be 1/3, and the third cluster will be 1/2. The pps sampling results in a fixed sample size n (as opposed to Poisson sampling which is similar but results in a random sample size with ...
This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...