enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    A simple harmonic oscillator is an oscillator that is neither driven nor damped. It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k. Balance of forces (Newton's second law) for the system is.

  3. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    Simple harmonic motion can serve as a mathematical model for a variety of motions, but is typified by the oscillation of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's law. The motion is sinusoidal in time and demonstrates a single resonant frequency. Other phenomena can be modeled by simple ...

  4. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    Quantum mechanics. Some trajectories of a harmonic oscillator according to Newton's laws of classical mechanics (A–B), and according to the Schrödinger equation of quantum mechanics (C–H). In A–B, the particle (represented as a ball attached to a spring) oscillates back and forth.

  5. Coherent state - Wikipedia

    en.wikipedia.org/wiki/Coherent_state

    It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. [1] The quantum harmonic oscillator (and hence the coherent states) arise in the quantum theory of a wide range of physical systems. [2]

  6. Hermite polynomials - Wikipedia

    en.wikipedia.org/wiki/Hermite_polynomials

    The Hermite polynomials (probabilist's or physicist's) form an orthogonal basis of the Hilbert space of functions satisfying in which the inner product is given by the integral including the Gaussian weight function w(x) defined in the preceding section. An orthogonal basis for L2 (R, w (x) dx) is a complete orthogonal system.

  7. Phase-space formulation - Wikipedia

    en.wikipedia.org/wiki/Phase-space_formulation

    For the harmonic oscillator, the time evolution of an arbitrary Wigner distribution is simple. An initial W ( x , p ; t = 0) = F ( u ) evolves by the above evolution equation driven by the oscillator Hamiltonian given, by simply rigidly rotating in phase space , [ 1 ]

  8. Creation and annihilation operators - Wikipedia

    en.wikipedia.org/wiki/Creation_and_annihilation...

    Creation and annihilation operators. Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. [1] An annihilation operator (usually denoted ) lowers the number of particles in a given state by one.

  9. Bertrand's theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_theorem

    Here we show that a necessary condition for stable, exactly closed non-circular orbits is an inverse-square force or radial harmonic oscillator potential. In the following sections, we show that those two force laws produce stable, exactly closed orbits (a sufficient condition ) [it is unclear to the reader exactly what is the sufficient ...