Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity).
This effect leads to something called gravitational time dilation.Time appears to move slower near massive objects because the object's gravitational force bends space-time.
This gravitational frequency shift corresponds to a gravitational time dilation: Since the "higher" observer measures the same light wave to have a lower frequency than the "lower" observer, time must be passing faster for the higher observer. Thus, time runs more slowly for observers the lower they are in a gravitational field.
Also, gravitational time dilation was measured from a difference in elevation between two clocks of only 33 cm (13 in). [28] [29] Presently both gravitational and velocity effects are routinely incorporated, for example, into the calculations used for the Global Positioning System. [30]
In astronomical objects with strong gravitational fields the redshift can be much greater; for example, light from the surface of a white dwarf is gravitationally redshifted on average by around (50 km/s)/c (around 170 ppm). [12] Observing the gravitational redshift in the Solar System is one of the classical tests of general relativity. [13]
The mechanism for the advancing of the stay-at-home twin's clock is gravitational time dilation. When an observer finds that inertially moving objects are being accelerated with respect to themselves, those objects are in a gravitational field insofar as relativity is concerned.
Experimental verification of gravitational redshift using terrestrial sources took several decades, because it is difficult to find clocks (to measure time dilation) or sources of electromagnetic radiation (to measure redshift) with a frequency that is known well enough that the effect can be accurately measured.