Search results
Results from the WOW.Com Content Network
A Fixture Unit is not a flow rate unit but a design factor. A fixture unit is equal to 1 cubic foot (0.028 m 3) of water drained in a 1 + 1 ⁄ 4 inches (32 mm) diameter pipe over one minute. [2] One cubic foot of water is roughly 7.48 US gallons (28.3 L; 6.23 imp gal). A Fixture Unit is used in plumbing design for both water supply and waste ...
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
In most contexts a mention of rate of fluid flow is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as discharge. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1. The integration ...
The following table gives flow rate Q such that friction loss per unit length Δp / L (SI kg / m 2 / s 2) is 0.082, 0.245, and 0.816, respectively, for a variety of nominal duct sizes. The three values chosen for friction loss correspond to, in US units inch water column per 100 feet, 0.01, .03, and 0.1.
References will be made to "actual" flow rate through a meter and "standard" or "base" flow rate through a meter with units such as acm/h (actual cubic meters per hour), sm 3 /sec (standard cubic meters per second), kscm/h (thousand standard cubic meters per hour), LFM (linear feet per minute), or MMSCFD (million standard cubic feet per day).
For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [ 13 ] [ 14 ] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe.
It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as =, where Q is the rate of flow (expressed in US gallons per minute), SG is the specific gravity of the fluid (for water ...
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.