Search results
Results from the WOW.Com Content Network
It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .
This work has been released into the public domain by its author, Mik81.This applies worldwide. In some countries this may not be legally possible; if so: Mik81 grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Hendrik Wade Bode (/ ˈ b oʊ d i / BOH-dee, Dutch:; [1] December 24, 1905 – June 21, 1982) [1] was an American engineer, researcher, inventor, author and scientist, of Dutch ancestry. As a pioneer of modern control theory and electronic telecommunications he revolutionized both the content and methodology of his chosen fields of research.
The Bode plot of a first-order low-pass filter. The frequency response of the Butterworth filter is maximally flat (i.e., has no ripples) in the passband and rolls off towards zero in the stopband. [2] When viewed on a logarithmic Bode plot, the response slopes off linearly towards negative
Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Bode plot;
In the middle of the 20th century, Bode proposed the first idea involving the use of fractional-order controllers in a feedback problem by what is known as Bode's ideal transfer function. Bode proposed that the ideal shape of the Nyquist plot for the open loop frequency response is a straight line in the complex plane, which provides ...
Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.
Bode magnitude plot for the voltages across the elements of an RLC series circuit. Natural frequency ω 0 = 1 rad/s, damping ratio ζ = 0.4. Sinusoidal steady state is represented by letting s = jω, where j is the imaginary unit. Taking the magnitude of the above equation with this substitution: