enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    Defining equation SI units Dimension AM index: h, h AM = / A = carrier amplitude A m = peak amplitude of a component in the modulating signal . dimensionless dimensionless FM index: h FM = / Δf = max. deviation of the instantaneous frequency from the carrier frequency

  3. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.

  4. Amplitude - Wikipedia

    en.wikipedia.org/wiki/Amplitude

    Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .

  5. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    In practice, the position-space wave function is used much more often than the momentum-space wave function. The potential entering the relevant equation (Schrödinger, Dirac, etc.) determines in which basis the description is easiest. For the harmonic oscillator, x and p enter symmetrically, so there it does not matter which description one ...

  6. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...

  7. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  8. Probability amplitude - Wikipedia

    en.wikipedia.org/wiki/Probability_amplitude

    The solid body shows the places where the electron's probability density is above a certain value (here 0.02 nm −3): this is calculated from the probability amplitude. The hue on the colored surface shows the complex phase of the wave function. In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour ...

  9. Wave vector - Wikipedia

    en.wikipedia.org/wiki/Wave_vector

    A is the amplitude of the wave (the peak magnitude of the oscillation), φ is a phase offset , ω is the (temporal) angular frequency of the wave, describing how many radians it traverses per unit of time, and related to the period T by the equation ω = 2 π T , {\displaystyle \omega ={\tfrac {2\pi }{T}},}