enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resting potential - Wikipedia

    en.wikipedia.org/wiki/Resting_potential

    The Na + /K +-ATPase, as well as effects of diffusion of the involved ions, are major mechanisms to maintain the resting potential across the membranes of animal cells.. The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as opposed to the specific dynamic electrochemical phenomena called action potential and graded ...

  3. Goldman equation - Wikipedia

    en.wikipedia.org/wiki/Goldman_equation

    The ionic charge determines the sign of the membrane potential contribution. During an action potential, although the membrane potential changes about 100mV, the concentrations of ions inside and outside the cell do not change significantly. They are always very close to their respective concentrations when the membrane is at their resting ...

  4. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    A neuron's resting membrane potential actually changes during the development of an organism. In order for a neuron to eventually adopt its full adult function, its potential must be tightly regulated during development. As an organism progresses through development the resting membrane potential becomes more negative. [23]

  5. Depolarization - Wikipedia

    en.wikipedia.org/wiki/Depolarization

    The process of depolarization is entirely dependent upon the intrinsic electrical nature of most cells. When a cell is at rest, the cell maintains what is known as a resting potential. The resting potential generated by nearly all cells results in the interior of the cell having a negative charge compared to the exterior of the cell.

  6. Ion channel - Wikipedia

    en.wikipedia.org/wiki/Ion_channel

    Their functions include establishing a resting membrane potential, [1] shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Ion channels are present in the membranes of all cells.

  7. Sodium–potassium pump - Wikipedia

    en.wikipedia.org/wiki/Sodium–potassium_pump

    In order to maintain the cell membrane potential, cells keep a low concentration of sodium ions and high levels of potassium ions within the cell (intracellular). The sodium–potassium pump mechanism moves 3 sodium ions out and moves 2 potassium ions in, thus, in total, removing one positive charge carrier from the intracellular space (see ...

  8. Polarized membrane - Wikipedia

    en.wikipedia.org/wiki/Polarized_membrane

    Plasma membranes exhibit electrochemical polarity through establishment and maintenance of a resting membrane potential. Cells with polarized plasma membranes must buffer and adequately distribute certain ions, such as sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), and chloride (Cl - ) to establish and maintain this polarity.

  9. Steady state (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Steady_state_(biochemistry)

    In other words, there is a differential distribution of ions on either side of the cell membrane - that is, the amount of ions on either side is not equal and therefore a charge separation exists. [8] However, ions move across the cell membrane such that a constant resting membrane potential is achieved; this is ionic steady state. [8]