Search results
Results from the WOW.Com Content Network
The RSA problem is defined as the task of taking e th roots modulo a composite n: recovering a value m such that c ≡ m e (mod n), where (n, e) is an RSA public key, and c is an RSA ciphertext. Currently the most promising approach to solving the RSA problem is to factor the modulus n.
It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography. It defines the mathematical properties of public and private keys, primitive operations for encryption and signatures, secure cryptographic schemes, and related ASN.1 syntax representations. The current version is 2.2 (2012 ...
PKCS Standards Summary; Version Name Comments PKCS #1: 2.2: RSA Cryptography Standard [1]: See RFC 8017. Defines the mathematical properties and format of RSA public and private keys (ASN.1-encoded in clear-text), and the basic algorithms and encoding/padding schemes for performing RSA encryption, decryption, and producing and verifying signatures.
PKCS #12 files are usually created using OpenSSL, which only supports a single private key from the command line interface. The Java keytool can be used to create multiple "entries" since Java 8, but that may be incompatible with many other systems. [8] As of Java 9 (released 2017-09-21), PKCS #12 is the default keystore format. [9] [10]
PKCS #8 is one of the family of standards called Public-Key Cryptography Standards (PKCS) created by RSA Laboratories. The latest version, 1.2, is available as RFC 5208. [1] The PKCS #8 private key may be encrypted with a passphrase using one of the PKCS #5 standards defined in RFC 2898, [2] which supports multiple encryption schemes.
X.509 public key certificates, X.509 CRLs In cryptography , PKCS #7 ("PKCS #7: Cryptographic Message Syntax", "CMS") is a standard syntax for storing signed and/or encrypted data. PKCS #7 is one of the family of standards called Public-Key Cryptography Standards ( PKCS ) created by RSA Laboratories .
RSA uses exponentiation modulo a product of two very large primes, to encrypt and decrypt, performing both public key encryption and public key digital signatures. Its security is connected to the extreme difficulty of factoring large integers , a problem for which there is no known efficient general technique.
Table compares implementations of block ciphers. Block ciphers are defined as being deterministic and operating on a set number of bits (termed a block) using a symmetric key. Each block cipher can be broken up into the possible key sizes and block cipher modes it can be run with.