Search results
Results from the WOW.Com Content Network
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object X {\displaystyle X} in n {\displaystyle n} - dimensional space is the intersection of all hyperplanes that divide X {\displaystyle X} into two parts of equal moment about the hyperplane.
Centroid of a triangle. In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.
Hence there are four medians and three bimedians in a tetrahedron. These seven line segments are all concurrent at a point called the centroid of the tetrahedron. [25] In addition the four medians are divided in a 3:1 ratio by the centroid (see Commandino's theorem). The centroid of a tetrahedron is the midpoint between its Monge point and ...
The "vertex centroid" comes from considering the polygon as being empty but having equal masses at its vertices. The "side centroid" comes from considering the sides to have constant mass per unit length. The usual centre, called just the centroid (centre of area) comes from considering the surface of the polygon as having constant density ...
There are four medians, and they are all concurrent at the centroid of the tetrahedron. [10] As in the two-dimensional case, the centroid of the tetrahedron is the center of mass. However contrary to the two-dimensional case the centroid divides the medians not in a 2:1 ratio but in a 3:1 ratio (Commandino's theorem).
The centroid of a rigid triangular object (cut out of a thin sheet of uniform density) is also its center of mass: the object can be balanced on its centroid in a uniform gravitational field. [30] The centroid cuts every median in the ratio 2:1, i.e. the distance between a vertex and the centroid is twice the distance between the centroid and ...
Geometrically defined it is the centroid of all land surfaces within the two dimensions of the Geoid surface which approximates the Earth's outer shape. The term centre of minimum distance [ 1 ] specifies the concept more precisely as the domain is the sphere surface without boundary and not the three-dimensional body.