Search results
Results from the WOW.Com Content Network
Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.
The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...
A practical way to enforce this is by requiring that the next search direction be built out of the current residual and all previous search directions. The conjugation constraint is an orthonormal-type constraint and hence the algorithm can be viewed as an example of Gram-Schmidt orthonormalization. This gives the following expression:
Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.
The resulting constraint is no longer satisfied by all pairs of values. Therefore, it is no longer a virtual, trivial constraint. The name "path consistency" derives from the original definition, which involved a pair of variables and a path between them, rather than a pair and a single variable.
A file URI has the format file://host/path. where host is the fully qualified domain name of the system on which the path is accessible, and path is a hierarchical directory path of the form directory/directory/.../name. If host is omitted, it is taken to be "localhost", the machine from which the URL is being interpreted.
The overall result is that when one ant finds a good (i.e., short) path from the colony to a food source, other ants are more likely to follow that path, and positive feedback eventually leads to many ants following a single path. The idea of the ant colony algorithm is to mimic this behavior with "simulated ants" walking around the graph ...
Stop-and-copy garbage collection in a Lisp architecture: [1] Memory is divided into working and free memory; new objects are allocated in the former. When it is full (depicted), garbage collection is performed: All data structures still in use are located by pointer tracing and copied into consecutive locations in free memory.