Search results
Results from the WOW.Com Content Network
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier ∀ {\displaystyle \forall } in the first order formula ∀ x P ( x ) {\displaystyle \forall xP(x)} expresses that everything in the domain satisfies the property denoted by P ...
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...
The scope of a logical connective occurring within a formula is the smallest well-formed formula that contains the connective in question. [2] [6] [8] The connective with the largest scope in a formula is called its dominant connective, [9] [10] main connective, [6] [8] [7] main operator, [2] major connective, [4] or principal connective; [4] a connective within the scope of another connective ...
Due to the ability to speak about non-logical individuals along with the original logical connectives, first-order logic includes propositional logic. [ 7 ] : 29–30 The truth of a formula such as " x is a philosopher" depends on which object is denoted by x and on the interpretation of the predicate "is a philosopher".
In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain.
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement
Herbrand's theorem is the logical foundation for most automatic theorem provers. Although Herbrand originally proved his theorem for arbitrary formulas of first-order logic, [2] the simpler version shown here, restricted to formulas in prenex form containing only existential quantifiers, became more popular.
In mathematical logic, a Lindström quantifier is a generalized polyadic quantifier. ... for A an L-structure (or L-model) in a language L, φ an L-formula, ...