Search results
Results from the WOW.Com Content Network
Quite often, textbook problems will treat the population standard deviation as if it were known and thereby avoid the need to use the Student's t distribution. These problems are generally of two kinds: (1) those in which the sample size is so large that one may treat a data-based estimate of the variance as if it were certain, and (2) those ...
Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis.
Multivariate normal distribution, which is the limiting case of the multivariate Student's t-distribution when . Chi distribution , the pdf of the scaling factor in the construction the Student's t-distribution and also the 2-norm (or Euclidean norm ) of a multivariate normally distributed vector (centered at zero).
In the same volume Fisher contributed applications of Student's t-distribution to regression analysis. [3] Although introduced by others, Studentized residuals are named in Student's honour because, like the problem that led to Student's t-distribution, the idea of adjusting for estimated standard deviations is central to that concept. [7]
The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
Under the null hypothesis of equal expectations, μ 1 = μ 2, the distribution of the Behrens–Fisher statistic T, which also depends on the variance ratio σ 1 2 /σ 2 2, could now be approximated by Student's t distribution with these ν degrees of freedom. But this ν contains the population variances σ i 2, and these are unknown. The ...