enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    For example, a linear operator is represented in a basis as a two-dimensional square n × n array. The numbers in the multidimensional array are known as the components of the tensor. They are denoted by indices giving their position in the array, as subscripts and superscripts, following the symbolic name of the tensor.

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Evidently, conformality of metrics is an equivalence relation. Here are some formulas for conformal changes in tensors associated with the metric. (Quantities marked with a tilde will be associated with ~, while those unmarked with such will be associated with .)

  4. Electromagnetic tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_tensor

    or using the index notation with square brackets for the antisymmetric part of the tensor: ∂ [ α F β γ ] = 0 {\displaystyle \partial _{[\alpha }F_{\beta \gamma ]}=0} Using the expression relating the Faraday tensor to the four-potential, one can prove that the above antisymmetric quantity turns to zero identically ( ≡ 0 {\displaystyle ...

  5. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  6. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The constitutive relations between the and F tensors, proposed by Minkowski for a linear materials (that is, E is proportional to D and B proportional to H), are: = = where u is the four-velocity of material, ε and μ are respectively the proper permittivity and permeability of the material (i.e. in rest frame of material), and denotes the ...

  7. Metric tensor - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor

    In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold M (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there.

  8. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Let r(x) be the position vector of the point x with respect to the origin of the coordinate system. The notation can be simplified by noting that x = r(x). At each point we can construct a small line element dx. The square of the length of the line element is the scalar product dx • dx and is called the metric of the space.

  9. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    and the second fundamental form at the origin in the coordinates (x,y) is the quadratic form L d x 2 + 2 M d x d y + N d y 2 . {\displaystyle L\,dx^{2}+2M\,dx\,dy+N\,dy^{2}\,.} For a smooth point P on S , one can choose the coordinate system so that the plane z = 0 is tangent to S at P , and define the second fundamental form in the same way.