Ad
related to: partial differential equation question bank class 10
Search results
Results from the WOW.Com Content Network
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
In the study of partial differential equations, particularly in fluid dynamics, a self-similar solution is a form of solution which is similar to itself if the independent and dependent variables are appropriately scaled.
Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation (PDE) to a family of ordinary differential equations (ODE) along which the solution can be integrated from some initial data ...
These equations for solution of a first-order partial differential equation are identical to the Euler–Lagrange equations if we make the identification = ˙ ˙. We conclude that the function ψ {\displaystyle \psi } is the value of the minimizing integral A {\displaystyle A} as a function of the upper end point.
In finite-element analysis, the essential or Dirichlet boundary condition is defined by weighted-integral form of a differential equation. [2] The dependent unknown u in the same form as the weight function w appearing in the boundary expression is termed a primary variable , and its specification constitutes the essential or Dirichlet boundary ...
Thus it cannot be used directly on purely elliptic partial differential equations, such as Laplace's equation. However, MOL has been used to solve Laplace's equation by using the method of false transients. [1] [8] In this method, a time derivative of the dependent variable is added to Laplace’s equation. Finite differences are then used to ...
PDE surfaces use partial differential equations to generate a surface which usually satisfy a mathematical boundary value problem. PDE surfaces were first introduced into the area of geometric modelling and computer graphics by two British mathematicians, Malcolm Bloor and Michael Wilson.
The Adomian decomposition method (ADM) is a semi-analytical method for solving ordinary and partial nonlinear differential equations.The method was developed from the 1970s to the 1990s by George Adomian, chair of the Center for Applied Mathematics at the University of Georgia. [1]
Ad
related to: partial differential equation question bank class 10