enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. p–n junction - Wikipedia

    en.wikipedia.org/wiki/P–n_junction

    The electrons and holes travel in opposite directions, but they also have opposite charges, so the overall current is in the same direction on both sides of the diode, as required. The Shockley diode equation models the forward-bias operational characteristics of a p–n junction outside the avalanche (reverse-biased conducting) region.

  3. Diode modelling - Wikipedia

    en.wikipedia.org/wiki/Diode_modelling

    The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).

  4. Diode - Wikipedia

    en.wikipedia.org/wiki/Diode

    In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting. Electron flow is the reverse of conventional current flow. [2] [3] [4] A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance).

  5. Shockley diode equation - Wikipedia

    en.wikipedia.org/wiki/Shockley_diode_equation

    Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3] He calls it "a theoretical rectification formula giving the maximum rectification", with a footnote referencing a paper by Carl Wagner , Physikalische Zeitschrift 32 , pp ...

  6. Diode - en.wikipedia.org

    en.wikipedia.org/.../page/mobile-html/Crystal_diode

    Various semiconductor diodes. Left: A four-diode bridge rectifier. Next to it is a 1N4148 signal diode. On the far right is a Zener diode. In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting. Electron flow is the reverse of conventional current flow. [1] [2] [3]

  7. p–n diode - Wikipedia

    en.wikipedia.org/wiki/P–n_diode

    A p–n diode is a type of semiconductor diode based upon the p–n junction. The diode conducts current in only one direction, and it is made by joining a p-type semiconducting layer to an n-type semiconducting layer. Semiconductor diodes have multiple uses including rectification of alternating current to direct current, in the detection of ...

  8. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    Band diagram for p–n junction at equilibrium. The depletion region is shaded. φ B denotes band shift for holes and charges level. See P–n diode. The inner workings of a light emitting diode, showing circuit (top) and band diagram when a bias voltage is applied (bottom).

  9. Diffusion current - Wikipedia

    en.wikipedia.org/wiki/Diffusion_current

    The drift current, by contrast, is due to the motion of charge carriers due to the force exerted on them by an electric field. Diffusion current can be in the same or opposite direction of a drift current. The diffusion current and drift current together are described by the drift–diffusion equation. [1]