Search results
Results from the WOW.Com Content Network
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
The Riemann hypothesis is a conjecture about the distribution of the zeros of the Riemann zeta-function ζ(s). The Riemann zeta-function is defined for all complex numbers s ≠ 1. It has zeros at the negative even integers (i.e. at s=-2, s=-4, s=-6, ...). These are called the trivial zeros. The Riemann hypothesis is concerned with the non ...
The Riemann hypothesis is one of the most important conjectures in mathematics.It is a statement about the zeros of the Riemann zeta function.Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function.
A prototypical example, the Riemann zeta function has a functional equation relating its value at the complex number s with its value at 1 − s. In every case this relates to some value ζ(s) that is only defined by analytic continuation from the infinite series definition.
Gourdon (2004), The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height Odlyzko, A. (1992), The 10 20 -th zero of the Riemann zeta function and 175 million of its neighbors This unpublished book describes the implementation of the algorithm and discusses the results in detail.
Z function in the complex plane, plotted with a variant of domain coloring. Z function in the complex plane, zoomed out. In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half.
Since the Hurwitz zeta function is a generalization of the Riemann zeta function, we have γ n (1)=γ n The zeroth constant is simply the digamma-function γ 0 (a)=-Ψ(a), [28] while other constants are not known to be reducible to any elementary or classical function of analysis. Nevertheless, there are numerous representations for them.