Search results
Results from the WOW.Com Content Network
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
ξ is an empirical loss coefficient, which is dimensionless and has a value between zero and one, 0 ≤ ξ ≤ 1, ρ is the fluid density, v 1 and v 2 are the mean flow velocities before and after the expansion. In case of an abrupt and wide expansion, the loss coefficient is equal to one. [1]
Temperature gradients, thermal expansion or contraction and thermal shocks are things that can lead to thermal stress. This type of stress is highly dependent on the thermal expansion coefficient which varies from material to material. In general, the greater the temperature change, the higher the level of stress that can occur.
The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
With these two coefficients, the density ratio can be calculated. This determines the contribution of the temperature and salinity to the density of a water parcel. β is called a contraction coefficient, because when salinity increases, water becomes denser, and if the temperature increases, water becomes less dense.
Negative and positive thermal expansion hereby compensate each other to a certain amount if the temperature is changed. Tailoring the overall thermal expansion coefficient (CTE) to a certain value can be achieved by varying the volume fractions of the different materials contributing to the thermal expansion of the composite. [8] [20]
Moisture expansion is the tendency of matter to change its volume in response to a change in moisture content. The macroscopic effect is similar to that of thermal expansion but the microscopic causes are very different.