enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Milankovitch cycles - Wikipedia

    en.wikipedia.org/wiki/Milankovitch_cycles

    The Earth's orbit approximates an ellipse. Eccentricity measures the departure of this ellipse from circularity. The shape of the Earth's orbit varies between nearly circular (theoretically the eccentricity can hit zero) and mildly elliptical (highest eccentricity was 0.0679 in the last 250 million years). [7] Its geometric or logarithmic mean ...

  3. Orbital forcing - Wikipedia

    en.wikipedia.org/wiki/Orbital_forcing

    Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the Sun (see Milankovitch cycles).These orbital changes modify the total amount of sunlight reaching the Earth by up to 25% at mid-latitudes (from 400 to 500 W/(m 2) at latitudes of 60 degrees).

  4. 100,000-year problem - Wikipedia

    en.wikipedia.org/wiki/100,000-year_problem

    The 100,000-year problem (also 100 ky problem or 100 ka problem) of the Milankovitch theory of orbital forcing refers to a discrepancy between the reconstructed geologic temperature record and the reconstructed amount of incoming solar radiation, or insolation over the past 800,000 years. [1] Due to variations in the Earth's orbit, the amount ...

  5. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    [nb 1] Earth's orbital speed averages 29.78 km/s (19 mi/s; 107,208 km/h; 66,616 mph), which is fast enough to cover the planet's diameter in 7 minutes and the distance to the Moon in 4 hours. [3] The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". [4] [5]

  6. Earth's energy budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_energy_budget

    Earth's energy budget (or Earth's energy balance) is the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy.

  7. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    Any cooling effect in one hemisphere is balanced by warming in the other, and any overall change will be counteracted by the fact that the eccentricity of Earth's orbit will be almost halved. [17] This will reduce the mean orbital radius and raise temperatures in both hemispheres closer to the mid- interglacial peak.

  8. Climate variability and change - Wikipedia

    en.wikipedia.org/wiki/Climate_variability_and_change

    The Sun is the predominant source of energy input to the Earth's climate system. Other sources include geothermal energy from the Earth's core, tidal energy from the Moon and heat from the decay of radioactive compounds. Both long term variations in solar intensity are known to affect global climate. [62]

  9. Milutin Milanković - Wikipedia

    en.wikipedia.org/wiki/Milutin_Milanković

    The second contribution is the explanation of Earth's long-term climate changes caused by changes in the position of the Earth in comparison to the Sun, now known as Milankovitch cycles. This partly explained the ice ages occurring in the geological past of the Earth, as well as the climate changes on the Earth which can be expected in the future.