enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Milankovitch cycles - Wikipedia

    en.wikipedia.org/wiki/Milankovitch_cycles

    The Earth's orbit approximates an ellipse. Eccentricity measures the departure of this ellipse from circularity. The shape of the Earth's orbit varies between nearly circular (theoretically the eccentricity can hit zero) and mildly elliptical (highest eccentricity was 0.0679 in the last 250 million years). [7] Its geometric or logarithmic mean ...

  3. Orbital forcing - Wikipedia

    en.wikipedia.org/wiki/Orbital_forcing

    Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the Sun (see Milankovitch cycles).These orbital changes modify the total amount of sunlight reaching the Earth by up to 25% at mid-latitudes (from 400 to 500 W/(m 2) at latitudes of 60 degrees).

  4. 100,000-year problem - Wikipedia

    en.wikipedia.org/wiki/100,000-year_problem

    δ 18 O, a proxy for temperature, for the last 600,000 years (an average from several deep sea sediment carbonate samples) [a]. The 100,000-year problem (also 100 ky problem or 100 ka problem) of the Milankovitch theory of orbital forcing refers to a discrepancy between the reconstructed geologic temperature record and the reconstructed amount of incoming solar radiation, or insolation over ...

  5. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).

  6. Earth's energy budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_energy_budget

    Earth's energy budget (or Earth's energy balance) is the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy.

  7. Effect of Sun angle on climate - Wikipedia

    en.wikipedia.org/wiki/Effect_of_Sun_angle_on_climate

    At fixed latitude, the size of the seasonal difference in sun angle (and thus the seasonal temperature variation) is equal to double the Earth's axial tilt. For example, with an axial tilt is 23°, and at a latitude of 45°, then the summer's peak sun angle is 68° (giving sin(68°) = 93% insolation at the surface), while winter's least sun ...

  8. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Earth's rotation period relative to the Sun (solar noon to solar noon) is its true solar day or apparent solar day. [26] It depends on Earth's orbital motion and is thus affected by changes in the eccentricity and inclination of Earth's orbit. Both vary over thousands of years, so the annual variation of the true solar day also varies.

  9. Solar activity and climate - Wikipedia

    en.wikipedia.org/wiki/Solar_activity_and_climate

    [28] [42] Lockwood and Fröhlich, 2007, found "considerable evidence for solar influence on the Earth's pre-industrial climate and the Sun may well have been a factor in post-industrial climate change in the first half of the last century", but that "over the past 20 years, all the trends in the Sun that could have had an influence on the Earth ...