Search results
Results from the WOW.Com Content Network
Trees with a single root may be viewed as rooted trees in the sense of graph theory in one of two ways: either as a tree (graph theory) or as a trivially perfect graph. In the first case, the graph is the undirected Hasse diagram of the partially ordered set, and in the second case, the graph is simply the underlying (undirected) graph of the ...
The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.
A rooted tree T that is a subgraph of some graph G is a normal tree if the ends of every T-path in G are comparable in this tree-order (Diestel 2005, p. 15). Rooted trees, often with an additional structure such as an ordering of the neighbors at each vertex, are a key data structure in computer science; see tree data structure.
Each labelled rooted forest can be turned into a labelled tree with one extra vertex, by adding a vertex with label n + 1 and connecting it to all roots of the trees in the forest. There is a close connection with rooted forests and parking functions , since the number of parking functions on n cars is also ( n + 1) n − 1 .
Height - Length of the path from the root to the deepest node in the tree. A (rooted) tree with only one node (the root) has a height of zero. In the example diagram, the tree has height of 2. Sibling - Nodes that share the same parent node. A node p is an ancestor of a node q if it exists on the path from q to the root. The node q is then ...
The term arborescence comes from French. [6] Some authors object to it on grounds that it is cumbersome to spell. [7] There is a large number of synonyms for arborescence in graph theory, including directed rooted tree, [3] [7] out-arborescence, [8] out-tree, [9] and even branching being used to denote the same concept. [9]
A size-n recursive tree's vertices are labeled by distinct positive integers 1, 2, …, n, where the labels are strictly increasing starting at the root labeled 1. Recursive trees are non-planar , which means that the children of a particular vertex are not ordered; for example, the following two size-3 recursive trees are equivalent: 3 / 1 \ 2 ...
Cartesian trees are defined using binary trees, which are a form of rooted tree. To construct the Cartesian tree for a given sequence of distinct numbers, set its root to be the minimum number in the sequence, [1] and recursively construct its left and right subtrees from the subsequences before and after this number, respectively. As a base ...