enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shogun (toolbox) - Wikipedia

    en.wikipedia.org/wiki/Shogun_(toolbox)

    The focus of Shogun is on kernel machines such as support vector machines for regression and classification problems. Shogun also offers a full implementation of Hidden Markov models. The core of Shogun is written in C++ and offers interfaces for MATLAB, Octave, Python, R, Java, Lua, Ruby and C#. Shogun has been under active development since 1999.

  3. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    The estimator of the vector-valued regularization framework can also be derived from a Bayesian viewpoint using Gaussian process methods in the case of a finite dimensional Reproducing kernel Hilbert space. The derivation is similar to the scalar-valued case Bayesian interpretation of regularization.

  4. Free module - Wikipedia

    en.wikipedia.org/wiki/Free_module

    Every vector space is a free module, [1] but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules. Given any set S and ring R, there is a free R-module with basis S, which is called the free module on S or module of formal R-linear combinations of the elements of S.

  5. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  6. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    C++ 2006 19.24.2 / 05.2023 Free Boost C++ template library; binds to optimized BLAS such as the Intel MKL; Includes matrix decompositions, non-linear solvers, and machine learning tooling Eigen: Benoît Jacob C++ 2008 3.4.0 / 08.2021 Free MPL2: Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related ...

  7. Math Kernel Library - Wikipedia

    en.wikipedia.org/wiki/Math_Kernel_Library

    Intel oneAPI Math Kernel Library (Intel oneMKL) , formerly known as Intel Math Kernel Library, is a library of optimized math routines for science, engineering, and financial applications. Core math functions include BLAS , LAPACK , ScaLAPACK , sparse solvers, fast Fourier transforms , and vector math.

  8. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.

  9. Data Plane Development Kit - Wikipedia

    en.wikipedia.org/wiki/Data_Plane_Development_Kit

    The Data Plane Development Kit (DPDK) is an open source software project managed by the Linux Foundation.It provides a set of data plane libraries and network interface controller polling-mode drivers for offloading TCP packet processing from the operating system kernel to processes running in user space.