Search results
Results from the WOW.Com Content Network
Solutions of the equation are also called roots or zeros of the polynomial on the left side. The theorem states that each rational solution x = p ⁄ q, written in lowest terms so that p and q are relatively prime, satisfies: p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n.
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
Thus, the zero-product property holds for any subring of a skew field. If is a prime number, then the ring of integers modulo has the zero-product property (in fact, it is a field). The Gaussian integers are an integral domain because they are a subring of the complex numbers.
Another criterion is given by a theorem of Kronecker. [5] [page needed] It says that, if the topological degree of a function f on a rectangle is non-zero, then the rectangle must contain at least one root of f. This criterion is the basis for several root-finding methods, such as those of Stenger [6] and Kearfott. [7]
The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]
In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields.
Given a general quadratic equation of the form + + = , with representing an unknown, and coefficients , , and representing known real or complex numbers with , the values of satisfying the equation, called the roots or zeros, can be found using the quadratic formula,
The Cayley–Hamilton theorem states that replacing by in the characteristic polynomial (interpreting the resulting powers as matrix powers, and the constant term as times the identity matrix) yields the zero matrix. Informally speaking, every matrix satisfies its own characteristic equation.