enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is a part of the NumPy ecosystem array libraries [7] and is widely adopted to utilize GPU with Python, [8] especially in high-performance computing environments such as Summit, [9] Perlmutter, [10] EULER, [11] and ABCI.

  3. List of performance analysis tools - Wikipedia

    en.wikipedia.org/wiki/List_of_performance...

    Arm MAP, a performance profiler supporting Linux platforms.; AppDynamics, an application performance management solution [buzzword] for C/C++ applications via SDK.; AQtime Pro, a performance profiler and memory allocation debugger that can be integrated into Microsoft Visual Studio, and Embarcadero RAD Studio, or can run as a stand-alone application.

  4. Windows Subsystem for Linux - Wikipedia

    en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

    Such a user space might contain a GNU Bash shell and command language, with native GNU command-line tools (sed, awk, etc.), programming-language interpreters (Ruby, Python, etc.), and even graphical applications (using an X11 server at the host side). [7]

  5. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is compatible with most standard operating systems. CUDA 8.0 comes with the following libraries (for compilation & runtime, in alphabetical order): cuBLAS – CUDA Basic Linear Algebra Subroutines library; CUDART – CUDA Runtime library

  6. Nvidia CUDA Compiler - Wikipedia

    en.wikipedia.org/wiki/Nvidia_CUDA_Compiler

    CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.

  7. PhysX - Wikipedia

    en.wikipedia.org/wiki/PhysX

    Nvidia started enabling PhysX hardware acceleration on its line of GeForce graphics cards [7] and eventually dropped support for Ageia PPUs. [8] PhysX SDK 3.0 was released in May 2011 and represented a significant rewrite of the SDK, bringing improvements such as more efficient multithreading and a unified code base for all supported platforms. [2]

  8. rCUDA - Wikipedia

    en.wikipedia.org/wiki/RCUDA

    rCUDA, which stands for Remote CUDA, is a type of middleware software framework for remote GPU virtualization. Fully compatible with the CUDA application programming interface ( API ), it allows the allocation of one or more CUDA-enabled GPUs to a single application.

  9. OptiX - Wikipedia

    en.wikipedia.org/wiki/OptiX

    The computations are offloaded to the GPUs through either the low-level or the high-level API introduced with CUDA. CUDA is only available for Nvidia's graphics products. Nvidia OptiX is part of Nvidia GameWorks. OptiX is a high-level, or "to-the-algorithm" API, meaning that it is designed to encapsulate the entire algorithm of which ray ...