Search results
Results from the WOW.Com Content Network
A reagent, termed the titrant or titrator, [2] is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte (which may also be termed the titrand [3]) to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.
Differences in the temperature between the titrant and the titrand; Evaporative losses from the surface of the rapidly mixed fluid; Heats of solution when the titrant solvent is mixed with the analyte solvent; Heat introduced by the mechanical action of stirring (minor influence); and; Heat produced by the thermistor itself (very minor influence).
The ratio of peak areas between the internal standard and analyte is calculated to determine analyte concentration. [12] A common type of internal standard is an isotopically labeled analogue of the analyte, which incorporates one or more atoms of 2 H, 13 C, 15 N and 18 O into its structure. [13]
An analyte, component (in clinical chemistry), titrand (in titrations), or chemical species is a substance or chemical constituent that is of interest in an analytical procedure. The remainder of the sample is called the matrix. The procedure of analysis measures the analyte's chemical or physical properties, thus establishing its identity or ...
An acid–base titration is a method of quantitative analysis for determining the concentration of Brønsted-Lowry acid or base (titrate) by neutralizing it using a solution of known concentration (titrant). [1] A pH indicator is used to monitor the progress of the acid–base reaction and a titration curve can be constructed. [1]
The first instrumental analysis was flame emissive spectrometry developed by Robert Bunsen and Gustav Kirchhoff who discovered rubidium (Rb) and caesium (Cs) in 1860. [4] Most of the major developments in analytical chemistry took place after 1900. During this period, instrumental analysis became progressively dominant in the field.
Although KF is a destructive analysis, the sample quantity is small and is typically limited by the accuracy of weighing. For example, in order to obtain an accuracy of 1% using a scale with the typical accuracy of 0.2 mg, the sample must contain 20 mg water, which is e.g. 200 mg for a sample with 10% water.
The electrochemical generation of a titrant is much more sensitive and can be much more accurately controlled than the mechanical addition of titrant using a burette drive. For example, a constant current flow of 10 μA for 100 ms is easily generated and corresponds to about 10 micrograms of titrant.